skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mahabal, A A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.Accreting ultracompact white dwarf binaries contain a white dwarf that is accreting from a degenerate object. They have orbital periods shorter than 65 min. Aims.We report the discovery and the orbital period of four new eclipsing accreting ultracompact white dwarf binaries found using the Zwicky Transient Facility (ZTF) and discuss their photometric properties. Methods.We searched through a list of 4171 dwarf novae compiled using the ZTF and used the box least square method to search for periodic signals in the data. Results.We found four eclipsing accreting ultracompact binaries with orbital periods between 25.9 and 56 min. One had previously been published as an AM Canum Venaticorum (AM CVn), and the other three systems are new discoveries. The two shorter-period systems are likely also AM CVn systems, while the longest-period system, with a period of 56 min, showed multiple super-outbursts over two years, which is more consistent with it being a helium CV. 
    more » « less
  2. Abstract Next-generation surveys like the Legacy Survey of Space and Time (LSST) on the Vera C. Rubin Observatory (Rubin) will generate orders of magnitude more discoveries of transients and variable stars than previous surveys. To prepare for this data deluge, we developed the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC), a competition that aimed to catalyze the development of robust classifiers under LSST-like conditions of a nonrepresentative training set for a large photometric test set of imbalanced classes. Over 1000 teams participated in PLAsTiCC, which was hosted in the Kaggle data science competition platform between 2018 September 28 and 2018 December 17, ultimately identifying three winners in 2019 February. Participants produced classifiers employing a diverse set of machine-learning techniques including hybrid combinations and ensemble averages of a range of approaches, among them boosted decision trees, neural networks, and multilayer perceptrons. The strong performance of the top three classifiers on Type Ia supernovae and kilonovae represent a major improvement over the current state of the art within astronomy. This paper summarizes the most promising methods and evaluates their results in detail, highlighting future directions both for classifier development and simulation needs for a next-generation PLAsTiCC data set. 
    more » « less
  3. ABSTRACT We present a sample of 14 hydrogen-rich superluminous supernovae (SLSNe II) from the Zwicky Transient Facility (ZTF) between 2018 and 2020. We include all classified SLSNe with peaks Mg < −20 mag with observed broad but not narrow Balmer emission, corresponding to roughly 20 per cent of all hydrogen-rich SLSNe in ZTF phase I. We examine the light curves and spectra of SLSNe II and attempt to constrain their power source using light-curve models. The brightest events are photometrically and spectroscopically similar to the prototypical SN 2008es, while others are found spectroscopically more reminiscent of non-superluminous SNe II, especially SNe II-L. 56Ni decay as the primary power source is ruled out. Light-curve models generally cannot distinguish between circumstellar interaction (CSI) and a magnetar central engine, but an excess of ultraviolet (UV) emission signifying CSI is seen in most of the SNe with UV data, at a wide range of photometric properties. Simultaneously, the broad H α profiles of the brightest SLSNe II can be explained through electron scattering in a symmetric circumstellar medium (CSM). In other SLSNe II without narrow lines, the CSM may be confined and wholly overrun by the ejecta. CSI, possibly involving mass lost in recent eruptions, is implied to be the dominant power source in most SLSNe II, and the diversity in properties is likely the result of different mass loss histories. Based on their radiated energy, an additional power source may be required for the brightest SLSNe II, however – possibly a central engine combined with CSI. 
    more » « less
  4. null (Ed.)
    Context. We present observations of ZTF20aatqesi (SN 2020faa). This Type II supernova (SN) displays a luminous light curve (LC) that started to rebrighten from an initial decline. We investigate this in relation to the famous SN iPTF14hls, which received a great deal of attention and multiple interpretations in the literature, but whose nature and source of energy still remain unknown. Aims. We demonstrate the great similarity between SN 2020faa and iPTF14hls during the first 6 months, and use this comparison to forecast the evolution of SN 2020faa and to reflect on the less well observed early evolution of iPTF14hls. Methods. We present and analyse our observational data, consisting mainly of optical LCs from the Zwicky Transient Facility in the gri bands and of a sequence of optical spectra. We construct colour curves and a bolometric lc, and we compare ejecta-velocity and black-body radius evolutions for the two supernovae (SNe) and for more typical Type II SNe. Results. The LCs show a great similarity with those of iPTF14hls over the first 6 months in luminosity, timescale, and colour. In addition, the spectral evolution of SN 2020faa is that of a Type II SN, although it probes earlier epochs than those available for iPTF14hls. Conclusions. The similar LC behaviour is suggestive of SN 2020faa being a new iPTF14hls. We present these observations now to advocate follow-up observations, since most of the more striking evolution of SN iPTF14hls came later, with LC undulations and a spectacular longevity. On the other hand, for SN 2020faa we have better constraints on the explosion epoch than we had for iPTF14hls, and we have been able to spectroscopically monitor it from earlier phases than was done for the more famous sibling. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)